$g t - C_4 H_9$ 

CH<sub>2</sub>Ph

## 2-ACYL-2, 3-DIHYDRO-1, 3-OXAZIN-6-ONES AND PYRROLO[1,2-a]PYRIMIDINES

### PROM 5(2H)-ISOXAZOLONES

### Egle M. Beccalli and Alessandro Marchesini\*

Dipartimento di Chimica Organica e Industriale, Universita' degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy

## Tullio Pilati

Centro CNR per lo Studio delle Relazioni tra Struttura e Reattivita' Chimica, Via Golgi 19, 20133 Milano, Italy

#### (Received in UK 29 June 1988)

<u>Abstract</u> - The reaction between the sodium salts of isoxazolin-5-ones 1 and  $\alpha$ -haloketones affords 2-acyl-2,3-dihydro-1,3oxazin-6-ones 3 and pyrrolo[1,2-a]pyrimidines 4.

5(2H)-Isoxazolones have been found to be a very good starting material for simple and high yield-synthesis of 1,3-oxazin-6-ones, e.g. 2-dialkylamino-1,3-oxazin-6-ones.<sup>2</sup>

In view of the recently reported<sup>3</sup> synthesis of 1,3-oxazin-6-ones from 5(2H)isoxazolones and 1,1-dihalo-compounds, we have considered the reaction between 5(2H)-isoxazolones and  $\alpha$ -haloketones.

Now we wish to report that 2-acyl-2,3-dihydro-1,3-oxazin-6-ones 3 and pyrrolo [1,2-a]pyrimidines 4 can be obtained from the sodium salts of isoxazolin-5-ones 1<sup>\*</sup> by reaction with  $\alpha$ -haloketones in DMF solution. As haloketones we used chloroace-tone 2a and  $\alpha$ -chloroacetophenone 2b.



6225

| Starting<br>material | Products <sup>a</sup> | R <sup>2</sup> | Ratio<br>of eluent <sup>b</sup> | Yield<br>(%) | mp(°C)<br>(solvent) <sup>C</sup>                             |
|----------------------|-----------------------|----------------|---------------------------------|--------------|--------------------------------------------------------------|
| 1a                   | 3aa                   | Me             | 1:1                             | 33           | 69-71 (Et <sub>2</sub> 0-Hx)                                 |
|                      | 444                   |                |                                 | 24           | 127 (Et <sub>2</sub> 0)                                      |
| <b>1a</b>            | 3ab                   | Ph             | 1:2                             | 29           | 117-119 (isoPr <sub>2</sub> 0)                               |
|                      | 4ab                   |                |                                 | 33           | 161-163 (CH <sub>2</sub> Cl <sub>2</sub> -Et <sub>2</sub> O) |
|                      | 5ab                   |                |                                 | 4            | 190-192 (Et <sub>2</sub> 0)                                  |
|                      | 6ab                   |                |                                 | 3            | 76-77 (Et <sub>2</sub> 0-Hx)                                 |
| 1b                   | 3ba                   | Me             | 3:1                             | 52           | 53-54 (Et <sub>2</sub> 0-Hx)                                 |
|                      | 4ba                   |                |                                 | 36           | 64-65 (Hx)                                                   |
| 1Ь                   | 356                   | Ph             | 3:1                             | 31           | 40-41 (Et <sub>2</sub> 0-Hx)                                 |
|                      | 4bb                   |                |                                 | 35           | 68-69 (Et <sub>2</sub> 0)                                    |
|                      | 5bb                   |                |                                 | 4            | 75-77 (Et <sub>2</sub> 0-Hx)                                 |
|                      | 6 <b>bb</b>           |                |                                 | 3            | 54-56 (Et <sub>2</sub> 0-Hx)                                 |
| 1c                   | 3ca                   | Me             | 1:1                             | 59           | 118-120 (Et <sub>2</sub> 0-Hx)                               |
|                      | 4ca                   |                |                                 | 11           | 85-87 (Hx)                                                   |
| lc                   | Зсь                   | Ph             | 1:1                             | 49           | 87-89 (Et <sub>2</sub> 0-Hx)                                 |
|                      | 4cb                   |                |                                 | 7            | oil                                                          |
|                      | 6cb                   |                |                                 | 18           | 66-68 (Et <sub>2</sub> 0-Hx)                                 |
| 1 <b>d</b>           | 3da                   | Ne             | d                               | 88           | 63-65 (isoPr <sub>2</sub> 0)                                 |
|                      | 4da                   |                |                                 | 11           | 177-179 (CH <sub>2</sub> Cl <sub>2</sub> -Et <sub>2</sub> O) |
| 1 <b>d</b>           | 3db                   | Ph             | 1:1                             | 30           | 98-100 (Et <sub>2</sub> 0-Hx)                                |
|                      | 4 <b>d</b> b          |                |                                 | 30           | 180-182 (Et <sub>2</sub> 0-Hx)                               |
| 1 <del>e</del>       | 30a                   | Ne             | e                               | 60           | 128-129 (CH <sub>2</sub> Cl <sub>2</sub> -Et <sub>2</sub> O) |
|                      | 4 <del>0</del> 4      |                |                                 | 3            | 231-233 (CH <sub>2</sub> Cl <sub>2</sub> -Et <sub>2</sub> O) |
| 1e                   | 3eb                   | Ph             | 1:1                             | 60           | 79-80 (Et <sub>2</sub> 0-Hx)                                 |
|                      | 4eb                   |                |                                 | 7            | 191-193 (CH <sub>2</sub> Cl <sub>2</sub> -Hx)                |
|                      | 6eb                   |                |                                 | 9            | 121-122 (Et <sub>2</sub> 0)                                  |
| 1 <b>f</b>           | 3fa                   | Me             | f                               | 41           | 120-122 (Et <sub>2</sub> 0-Hx)                               |
|                      | 4fa                   |                |                                 | 13           | 125-127 (Et <sub>2</sub> 0-Hx)                               |
| 1g                   | 3ga                   | Me             | 1:1                             | 5            | 142-144 (Et <sub>2</sub> 0-Hx)                               |
|                      | 6ga                   |                |                                 | 74           | 72 (Hx)                                                      |

## Table 1. Compounds prepared.

<sup>a</sup>Satisfactory elemental analysis obtained: C,H,N ± 0.2. <sup>b</sup>Bluent: petroleum ether-Et<sub>2</sub>O. <sup>C</sup>Hx=n-hexane. <sup>d</sup>Bluent: n-hexane-CH<sub>2</sub>Cl<sub>2</sub>, 1:2. <sup>e</sup>Bluent: CH<sub>2</sub>Cl<sub>2</sub>-Et<sub>2</sub>O, 20:1. <sup>f</sup>Bluent: CH<sub>2</sub>Cl<sub>2</sub>-CH<sub>3</sub>CN, 10:1.

|       |    |    |     | 1      |      |    |     |            |
|-------|----|----|-----|--------|------|----|-----|------------|
| Table | 2. | IR | and | -H-NMR | data | of | new | compounds. |

| Compd.      | IR (nujol)<br>v(cm-1) | 1 <sub>H-NMR</sub> (CDC1 <sub>3</sub> /TMS)<br>6, J(Hz)                                       |
|-------------|-----------------------|-----------------------------------------------------------------------------------------------|
| 3 <b>aa</b> | 3296,1721,1655        | 7.25(5H,s),5.73(1H,bs) <sup>4</sup> ,5.3(1H,d,J=3) <sup>b</sup> ,3.72(1H,d,                   |
|             |                       | J=15),3.66(1H,d,J=15),2.49(3H,s),2.08(3H),s.                                                  |
| 3ab         | 3383,1688,1590        | 8.15(2H,m),7.55(3H,m),7.28(5H,m),6.1(2H,m;1H,m after                                          |
|             |                       | D <sub>2</sub> O},3.78(1H,d,J=12),3.72(1H,d,J=12),2.1(3H,s).                                  |
| 3ba         | 3260,1726,1650        | 5.53(1H, <b>bs</b> ) <sup>&amp;</sup> ,5.23(1H,d,J≃3) <sup>b</sup> ,2.48(3H,s),2.2(2H,m),2.09 |
|             |                       | (3H,s),1.32(20H,m),0.9(3H,m).                                                                 |
| 3bb         | 3345,1690,1670        | 8.18(2H,m),7.53(3H,m),6.05(1H,d,J=3) <sup>b</sup> ,5.97(1H,bs) <sup>a</sup> ,2.3              |
|             |                       | (2H,m),2.1(3H,s),1.32(2OH,m),0.9(3H,m).                                                       |
| 3ca         | 3240,1731,1650        | 7.22(5H,s),5.78(1H,bs) <sup>a</sup> ,5.3(1H,d,J=3) <sup>b</sup> ,3.72(1H,d,J=18),             |
|             |                       | 3.68(1H,d,J=18),2.46(3H,s),2.27(2H,m),1.52(2H,m),0.92                                         |
|             |                       | (3H,m).                                                                                       |
| 3cb         | 3350,1695,1670        | 8.15(2H,m),7.6(3H,m),6.08(2H,d,J=4) <sup>b</sup> ,5.91(1H,bm) <sup>a</sup> ,3.8               |
|             |                       | (1H,d,J*15),3.73(1H,d,J=15),2.40(2H,m),1.57(2H,m),0.98                                        |
|             |                       | (3H,m).                                                                                       |
| 3da         | 3310,1730,1667        | 7.21(5H, <b>s</b> ),5.6(1H,bs) <sup>&amp;</sup> ,5.24(1H,d,J=3.5) <sup>b</sup> ,2.77(2H,m),   |
|             |                       | 2.62(2H,m),2.45(3H,s),1.78(3H,s).                                                             |
| 300         | 3300,1692,1668        | 8.12(2H,m),7.56(3H,m),7.21(5H,s),6.02(1H,d,J=4) <sup>b</sup> ,5.9                             |
|             |                       | (1H,bs) <sup>a</sup> ,2.78(2H,m),2.62(2H,m),1.71(3H,s).                                       |
| 388         | 3270,1733,1675        | 7.32(5H,m),6(1H,bs) <sup>a</sup> ,5.45(1H,d,J=3) <sup>b</sup> ,2.52(3H,s),1.97                |
|             |                       | (3H,s).                                                                                       |
| 3eb         | 3375,1693,1685        | 8.13(2H,m),7.5(3H,m),7.27(5H,m),6.47(1H,bm) <sup>a</sup> ,6.25(1H,                            |
|             |                       | d,J=3) <sup>b</sup> ,1.95(3H,s).                                                              |
| 3fa         | 3180,1732,1662        | 6.1(1H,bs) <sup>a</sup> ,5.35(1H,d,J=3) <sup>b</sup> ,3.73(3H,s),3.37(2H,s),2.48              |
|             |                       | (3H,s),2.1(3H,s).                                                                             |
| 3ga         | 3300,1731,1650        | 7.18(5H,s),5.82(1H,bs) <sup>&amp;</sup> ,5.18(1H,d,J=4.5) <sup>b</sup> ,3.89(2H,s),           |
|             |                       | 2.41(3H,s),1.35(9H,s).                                                                        |
| 4aa         | 3200,1680,1660        | 7.27(10H,s),4(1H,s) <sup>a</sup> ,3.95(2H,s),3.7(2H,s),2.56(3H,s),                            |
|             |                       | 2.4(3H,s),1.43(3H,s).                                                                         |
| 4ab         | 3320,1668,1640        | 7.25(15H,m),3.9(2H,m),3.55(1H,d,J=15),3.3(1H,d,J=15),                                         |
|             |                       | 3.42(1H,s) <sup>a</sup> ,2.6(3H,s),2.28(3H,s).                                                |
| 4ba         | 3160,1682,1665        | 3.8(1H,bs) <sup>a</sup> ,2.48(2H,m),2.47(3H,s),2.36(3H,s),2.3(2H,m),                          |
|             |                       | 1.6(3H,s),1.32(40H,m),0.9(6H,m).                                                              |
| 4bb         | 3320,1670,1640        | 7.3(5H,s),3.86(1H,s) <sup>a</sup> ,2.56(3H,s),2.5(2H,m),2.25(3H,s),                           |
|             |                       | 2.1(2H,m),1.3(40H,m),0.9(6H,m).                                                               |
| 4ca         | 3200,1682,1665        | 7.44(10H,m),4.2(1H,bs) <sup>#</sup> ,4.01(2H,bs),3.72(2H,bs),2.96                             |
|             |                       | (2H,m),2.66(2H,m),1.64(4H,m),1.46(3H,s),0.94(6H,m).                                           |

| 6228 |                | E. M. BECCALLI et al.                                                  |
|------|----------------|------------------------------------------------------------------------|
| 4cb  | 3390,1668,1660 | 7.23(10H,m),3.97(1H,d,J=14),3.9(1H,d,J=14),3.5(1H,d,                   |
|      |                | J=15),3.33(1H,d,J=15),3.3(1H,bs) <sup>a</sup> ,2.9(2H,m),2.5(2H,m),    |
|      |                | 1.5(4H,m),0.9(6H,m).                                                   |
| 4da  | 3150,1690,1668 | 7.25(10H,s),4.27(1H,bs) <sup>a</sup> ,2.9(2H,m),2.83(4H,bs),2.6(2H,    |
|      |                | m),2.38(3H,s),2.24(3H,s),1.62(3H,s).                                   |
| 4db  | 3360,1680,1650 | 7.25(15H,m),3.8(1H,bs) <sup>a</sup> ,2.82(4H,s),2.45(4H,m),2.38(3H,    |
|      |                | s),2.1(3H,s).                                                          |
| 4ea  | 3180,1680,1663 | 7.4(10H,m),4.4(1H,bs) <sup>a</sup> ,2.57(3H,s),2.28(3H,s),1.66(3H,s).  |
| 4eb  | 3320,1660,1640 | 7.3(15H,m),3.8(1H,bm) <sup>a</sup> ,2.63(3H,m),2.18(3H,m).             |
| 4fa  | 3340,1735,1685 | 4.38(1H,s) <sup>&amp;</sup> ,3.77(6H,s),3.6(2H,s),3.38(1H,d,J=18),3.32 |
|      |                | (1H,d,J=18),2.51(3H,s),2.38(3H,s),1.57(3H,s).                          |
| 5ab  | 1771,1678      | 7.95(2H,m),7.53(3H,m),7.2(5H,m),3.76(2H,s),3.1(2H,s),2                 |
|      |                | (3H,s).                                                                |
| 5bb  | 1779,1674      | 7.95(2H,m),7.5(3H,m),3.6(1H,d,J=18),3.5(1H,d,J=18),2(3H,               |
|      |                | <pre>s),1.75(2H,m),1.3(20H,m),0.9(3H,m).</pre>                         |
| 6ab  | 1690,1652      | 7.93(2H,m),7.6(3H,m),7.28(5H,s),5.61(2H,s),3.75(2H,s),                 |
|      |                | 2.1(3H,s).                                                             |
| 6bb  | 1690,1648      | 7.95(2H,m),7.6(3H,m),5.58(2H,s),2.32(2H,m),2.22(3H,s),                 |
|      |                | 1.35(20H,m),0.9(3H,m).                                                 |
| 6cb  | 1710,1650      | 7.83(2H,m),7.47(3H,m),7.18(5H,s),5.5(2H,s),3.67(2H,s),                 |
|      |                | 2.37(2H,t,J=8),1.52(2H,m),0.88(3H,t,J=8).                              |
| 6eb  | 1695,1640      | 7.9(2H,m),7.45(8H,m),5.64(2H,s),2.38(3H,s).                            |
| 6ga  | 1752,1650      | 7.23(5H,bs),4.8(2H,s),3.87(2H,s),2.18(3H,s),1.28(9H,s).                |
|      |                |                                                                        |

<sup>a</sup>Exchange with  $D_2O$ . <sup>b</sup>Singlet after  $D_2O$ .

The expected 2-acy1-2,3-diydro-1,3-oxazin-6-ones 3 were, in all cases, formed in satisfactory yields (Table 1) and easily obtained in the pure state by column chromatography on Florisil.



It is our opinion that the dihydrooxasinones 3 are formed by the initial attack of the haloketone 2 at position 2 of the isoxazolyl anion, followed by ring opening of the intermediate N-substituted isoxazolin-5-one (never isolated in the cases we studied) and cyclisation as shown:

| Atom  | ×         | У          | 2           |
|-------|-----------|------------|-------------|
| 0(18) | 0.7504(1) | 0.12118(9) | -0.07843(8) |
| 0(27) | 0.3744(1) | 0.0430(1)  | 0.26018(9)  |
| N(1)  | 0.3997(2) | 0.2082(1)  | 0.0841(1)   |
| N(5)  | 0.6385(1) | 0.13017(9) | 0.07775(9)  |
| C(2)  | 0.4087(2) | 0.2399(1)  | -0.0207(1)  |
| C(3)  | 0.5267(2) | 0.2168(1)  | -0.0781(1)  |
| C(4)  | 0.6477(2) | 0.1534(1)  | -0.0302(1)  |
| C(6)  | 0.7452(2) | 0.0742(1)  | 0.1537(1)   |
| C(7)  | 0.6872(2) | 0.0665(1)  | 0.2477(1)   |
| C(8)  | 0.5347(2) | 0.1203(1)  | 0.2434(1)   |
| C(9)  | 0.5140(2) | 0.1572(1)  | 0.1276(1)   |
| C(10) | 0.2758(3) | 0.3021(2)  | -0.0643(2)  |
| C(11) | 0.5390(2) | 0.2531(1)  | -0.1923(1)  |
| C(12) | 0.6590(2) | 0.3732(1)  | -0.1904(1)  |
| C(13) | 0.5905(3) | 0.4593(2)  | -0.2305(2)  |
| C(14) | 0.6998(3) | 0.5689(2)  | -0.2288(2)  |
| C(15) | 0.8799(3) | 0.5941(2)  | -0.1869(2)  |
| C(16) | 0.9513(3) | 0.5095(2)  | -0.1475(2)  |
| C(17) | 0.8419(3) | 0.4001(2)  | -0.1489(2)  |
| C(19) | 0.8966(3) | 0.0399(2)  | 0.1226(2)   |
| C(20) | 0.7544(3) | 0.0131(1)  | 0.3486(1)   |
| C(21) | 0.8662(2) | 0.0983(1)  | 0.4450(1)   |
| C(22) | 1.0167(3) | 0.1817(2)  | 0.4347(2)   |
| C(23) | 1.1121(3) | 0.2631(2)  | 0.5220(2)   |
| C(24) | 1.0595(3) | 0.2599(2)  | 0.6203(2)   |
| C(25) | 0.9148(3) | 0.1757(2)  | 0.6332(2)   |
| C(26) | 0.8181(3) | 0.0957(2)  | 0.5458(1)   |
| C(28) | 0.5864(2) | 0.2241(1)  | 0.3277(1)   |
| C(29) | 0.7189(2) | 0.3203(2)  | 0.3166(2)   |
| C(30) | 0.7767(3) | 0.4131(2)  | 0.3960(2)   |
| C(31) | 0.7018(3) | 0.4099(2)  | 0.4865(2)   |
| C(32) | 0.5700(3) | 0.3158(2)  | 0.4975(2)   |
| C(33) | 0.5096(3) | 0.2226(2)  | 0.4182(1)   |

Table 3. Final positional parameters for non-H atoms of 4ab with standard deviations in parentheses.





Table 4. Selected portion of the molecular geometry of 4sU with standard deviations in parentheses.

| Bond | lengths (Å)                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | O(18)-C(4)                                                                                                                   | 1.237(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | O(27)-C(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.418(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      | N(1)-C(2)                                                                                                                    | 1.381(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N(1)-C(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.287(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      | N(5)-C(4)                                                                                                                    | 1.392(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N(5)-C(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.462(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      | N(5)-C(9)                                                                                                                    | 1.369(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(2)-C(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.363(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      | C(2)-C(10)                                                                                                                   | 1.497(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(3)-C(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.451(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      | C(3)-C(11)                                                                                                                   | 1.514(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(6)-C(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.332(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      | C(6)-C(19)                                                                                                                   | 1.490(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(7)-C(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.525(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      | C(7)-C(20)                                                                                                                   | 1.509(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(8)-C(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.516(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      | C(8)-C(28)                                                                                                                   | 1.524(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(11)-C(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.513(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      | C(20)-C(21)                                                                                                                  | 1.513(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Bond | angles (*)                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| C(2) | -N(1)-C(9)                                                                                                                   | 116.1(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(6)-N(5)-C(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 109.4(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| C(4) | -N(5)-C(9)                                                                                                                   | 121.4(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(4)-N(5)-C(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 129.2(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| N(1) | -C(2)-C(10)                                                                                                                  | 113.0(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N(1) - C(2) - C(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 123.2(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| C(3) | -C(2)-C(10)                                                                                                                  | 123.7(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(2)-C(3)-C(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 123.4(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| C(2) | -C(3)-C(4)                                                                                                                   | 119.9(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(4)-C(3)-C(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 116.7(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| N(5) | -C(4)-C(3)                                                                                                                   | 113.7(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | O(18) - C(4) - C(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 124.8(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0(18 | )-C(4)-N(5)                                                                                                                  | 121.5(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N(5)-C(6)-C(19)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 120.9(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| N(5) | -C(6)-C(7)                                                                                                                   | 109.0(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(7)-C(6)-C(19)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 130.0(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| C(6) | -C(7)-C(20)                                                                                                                  | 127.8(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(6)-C(7)-C(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 111.0(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| C(8) | -C(7)-C(20)                                                                                                                  | 121.2(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | O(27)-C(8)-C(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 113.1(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| C(7) | -C(8)-C(28)                                                                                                                  | 111.9(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(7)-C(8)-C(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 101.3(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0(27 | )-C(8)-C(28)                                                                                                                 | 108.5(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | O(27)-C(8)-C(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 112.0(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| C(9) | -C(8)-C(28)                                                                                                                  | 110.0(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N(5)-C(9)-C(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 109.4(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| N(1) | -C(9)-C(8)                                                                                                                   | 125.2(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N(1)-C(9)-N(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 125.5(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| C(3) | -C(11)-C(12)                                                                                                                 | 113.1(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(7)-C(20)-C(21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 114.2(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      | Bond<br>C(2)<br>C(4)<br>N(1)<br>C(3)<br>C(2)<br>N(5)<br>O(18<br>N(5)<br>C(6)<br>C(6)<br>C(7)<br>O(27<br>C(9)<br>N(1)<br>C(3) | Bond lengths (Å)<br>O(18)-C(4)<br>N(1)-C(2)<br>N(5)-C(4)<br>N(5)-C(9)<br>C(2)-C(10)<br>C(3)-C(11)<br>C(6)-C(19)<br>C(7)-C(20)<br>C(8)-C(28)<br>C(20)-C(21)<br>Bond angles (*)<br>C(2)-N(1)-C(9)<br>C(4)-N(5)-C(9)<br>N(1)-C(2)-C(10)<br>C(3)-C(2)-C(10)<br>C(3)-C(2)-C(10)<br>C(2)-C(3)-C(4)<br>N(5)-C(4)-C(3)<br>O(18)-C(4)-N(5)<br>N(5)-C(6)-C(7)<br>C(6)-C(7)-C(20)<br>C(8)-C(7)-C(20)<br>C(7)-C(8)-C(28)<br>O(27)-C(8)-C(28)<br>C(9)-C(8)-C(28)<br>N(1)-C(9)-C(8)<br>C(3)-C(11)-C(12) | Bond lengths $(\lambda)$<br>O(18)-C(4) 1.237(2)<br>N(1)-C(2) 1.381(2)<br>N(5)-C(4) 1.392(2)<br>N(5)-C(9) 1.369(2)<br>C(2)-C(10) 1.497(3)<br>C(3)-C(11) 1.514(2)<br>C(6)-C(19) 1.490(3)<br>C(7)-C(20) 1.509(2)<br>C(8)-C(28) 1.524(2)<br>C(20)-C(21) 1.513(2)<br>Bond angles (*)<br>C(2)-N(1)-C(9) 116.1(1)<br>C(4)-N(5)-C(9) 121.4(1)<br>N(1)-C(2)-C(10) 113.0(1)<br>C(3)-C(2)-C(10) 123.7(1)<br>C(2)-C(3)-C(4) 119.9(1)<br>N(5)-C(4)-C(3) 113.7(1)<br>O(18)-C(4)-N(5) 121.5(1)<br>N(5)-C(6)-C(7) 109.0(1)<br>C(6)-C(7)-C(20) 127.8(2)<br>C(8)-C(28) 111.9(1)<br>O(27)-C(8)-C(28) 108.5(1)<br>C(9)-C(8)-C(28) 110.0(1)<br>N(1)-C(9)-C(8) 125.2(1)<br>C(3)-C(11)-C(12) 113.1(1) | Bond lengths (Å)<br>O(18)-C(4) 1.237(2) $O(27)-C(8)N(1)-C(2)$ 1.381(2) $N(1)-C(9)N(5)-C(4)$ 1.392(2) $N(5)-C(6)N(5)-C(9)$ 1.369(2) $C(2)-C(3)C(2)-C(10)$ 1.497(3) $C(3)-C(4)C(3)-C(11)$ 1.514(2) $C(6)-C(7)C(6)-C(19)$ 1.490(3) $C(7)-C(8)C(7)-C(20)$ 1.509(2) $C(8)-C(9)C(8)-C(28)$ 1.524(2) $C(11)-C(12)C(20)-C(21)$ 1.513(2)<br>Bond angles (*)<br>C(2)-N(1)-C(9) 116.1(1) $C(6)-N(5)-C(9)C(4)-N(5)-C(9)$ 121.4(1) $C(4)-N(5)-C(6)N(1)-C(2)-C(10)$ 113.0(1) $N(1)-C(2)-C(3)C(3)-C(2)-C(10)$ 123.7(1) $C(2)-C(3)-C(11)C(2)-C(3)-C(4)$ 119.9(1) $C(4)-C(3)-C(11)N(5)-C(4)-C(3)$ 113.7(1) $O(18)-C(4)-C(3)O(18)-C(4)-N(5)$ 121.5(1) $N(5)-C(6)-C(19)N(5)-C(6)-C(7)$ 109.0(1) $C(7)-C(6)-C(19)N(5)-C(6)-C(7)$ 109.0(1) $C(7)-C(6)-C(19)C(6)-C(7)-C(20)$ 127.8(2) $C(6)-C(7)-C(8)C(8)-C(7)-C(28)$ 111.9(1) $C(7)-C(8)-C(7)C(7)-C(8)-C(28)$ 110.0(1) $N(5)-C(9)-C(8)N(1)-C(9)-C(8)$ 125.2(1) $N(1)-C(9)-C(8)N(1)-C(9)-C(8)$ 125.2(1) $N(1)-C(9)-N(5)C(3)-C(11)-C(12)$ 113.1(1) $C(7)-C(20)-C(21)$ |



Results are reported in Table 1. The structure of new compounds was assigned from analytical and spectroscopic data. In the <sup>1</sup>H-NMR spectra of dihydroxazinones 3 a signal in the range 5.6-6.47  $\delta$  corresponds to the NH group and the signal associated with the proton at C-2 position appears as a doublet (J=3-4.5 Hz) in the range 5.18-6.25  $\delta$ . This signal becames a singlet after deuteration (Table 2).

Besides dihydrooxazinones 3, the pyrrolo[1,2-a]pyrimidines 4 are formed in variable yields which, in some cases, are of the same order of magnitude as those of the dihydrocompounds 3. Compounds 4, very well detected from compounds 3 by t.l.c., are also visible at 366 nm, and can be isolated in pure condition by column chromatography on Florisil, also when present in low yields (Table 1).

The structure of compounds 4 was assigned from analytical and spectroscopic data as well as by single-crystal X-ray diffraction analysis of compound 4ab.

Figure 1 shows the molecular shape and numbering scheme, while the final position parameters are reported in Table 3 and some details of the geometry are given in Table 4.

The C-C distances in phenyl rings vary between 1.356 and 1.390 Å and the C-H bond lengths are in the range 0.93-1.02 Å. C-C-C bond angles in phenyl groups and angles involving H atoms are in the usual range.

The least-squares plane A through the pyrrolopyrimidine ring is not strictly planar: the maximum torsion angle on the perimeter is  $5.0(2)^{\circ}$  for C(2)-C(3)-C(4)-N(5). The phenyl group bonded to C(11) (plane B) is quite planar, being the maximum deviation 0.005(3) Å for C(15); those bonded to C(20) (plane C) and to C(8) (plane D) are more distorted, being the greatest deviations 0.017(3) and 0.010(2)A for C(22) and C(33) respectively. The last two groups are strongly coupled; in fact, the dihedral angle between C and D is  $15.32(7)^{\circ}$  and their mass centers are separated by only 3.588Å; such an interaction explains the distortion of C and D systems.

To minimizing intramolecolar hindrance, the phenyl groups are nearly perpendicular to pyrrolopyrimidine plane: the dihedral angles AAB, AAC and AAD are in fact 72.71(5), 81.69(5) and 84.97(5)\* respectively.

As shown by Table 4, there is no strained bond in the molecule. The double bond C(6)=C(7) is well localized (bond length 1.332(2)Å), while the C(2)=C(3) [1.363(2)Å] and N(1)=C(9) [1.287(2)Å] bonds are longer than expected <sup>4</sup> for insulated systems, but shorter than expected<sup>4</sup> for the pyrimidine nucleus; this fact

and the shortness of C(4)-C(3), N(1)-C(2) and N(5)-C(9) single bonds indicate a non-aromatic conjugation through the system N(5)-C(9)-N(1)-C(2)-C(3)-C(4)-O(18).

There is no unusually short intermolecular distance and the molecular packing appears to be due only to dispersions forces.

The pyrrolo[1,2-a]pyrimidines 4 arise from the reaction between one equivalent of the haloketone 2 and two equivalents of the isoxazolin-5-one sodium salt 1°. It is clear that both the electrophilic centers of the haloketone molecule are involved, and that the two molecules of the isoxazolyl anion react at position 4 and 2 respectively. Further studies are planned to fully clarify the reaction mechanism.

By products are always present, and in the reaction with  $\alpha$ -chloroacetophenone 2b we were able to isolate compounds 5, derived from the attack of the haloketone at position 4, and compounds 6, derived from the attack at the oxygen atom of the isoxazolyl anion.



With chloroacetone 2a, only in the reaction with 1'g was the O-alkylated compound 6ga isolated. Only in this case was this compound the main product, pointing out the dramatic effect, on the course of the alkylation reaction, of the steric hindrance due to the group in position 3. For C- and O-substituted isoxazolin-5ones 5 and 6, not only analytical and <sup>1</sup>H-NMR data, but also IR spectra are decisive in structure assignment, as is known from literature data.<sup>5</sup>

### EXPERIMENTAL

<u>General methods</u>. Melting points were determined on a Buchi apparatus and are uncorrected. IR spectra were determined with a Perkin-Elmer 298 instrument, in Nujol mull for solids and liquid film or oils. <sup>1</sup>H-NMR spectra were recorded on a Varian EM-390 or on a Bruker WP80 SY spectrometer, in deuteriochloroform (CDCl<sub>3</sub>) solution unless otherwise stated, with tetramethylsilane as internal standard. Column chromatography was performed on Florisil, 0.150-0.250 mm. Thin layer cromatography (TLC) was performed using Merck silica gel (Kieselgel 60 F<sub>2.5.</sub>) analytical plates. Magnesium sulfate was used as drying agen. Evaporation was carried out under vacuum in a rotary evaporator. The starting materials were prepared according to literature procedures:  $1a^6$ ;  $1b^7$ ;  $1c,d,f,g^2$ ;  $1e^8$ . The isoxazolones sodium salts have been prepared as previously reported.<sup>3</sup>

# Reaction of Isoxazolones sodium salts 1' with chloroacetone 2a or a-chloroacetophenone 2b; General Procedure

The sodium salt of the appropriate isoxazolin-5-one (1' a-g, 5 mmol) is dissolved in DMF (30 mL) and then the appropriate haloketone (2a or 2b, 6 mmol) is added. The mixture is heated at  $70^{\circ}$ C for 2h.

After evaporation of the solvent, water (50 mL) is added and the mixture extracted with  $CH_2Cl_2$  (2x40mL). The organic layer is dried, filtered and evaporated. The residue is purified by column chromatography on Florisil to give pure compounds (see Table 1 and 2).

## X-ray analysis of 4ab and crystal data.

Crystals suitable for single crystal X-ray diffraction were obtained by slow evaporation of CH<sub>2</sub>Cl<sub>2</sub> solution.

For  $C_{29}H_{26}N_2O_2$ : Mol. wt. 434.5; triclinic, space group P1, a=7.940(1), b=12.259(2), c=12.412(2)Å, a=92.15,  $\beta$ =101.20(1),  $\gamma$ =106.09(1), V=1133.4(3)Å<sup>3</sup>, Z=2,  $\rho_{calc}$ =1,273g.cm<sup>-3</sup>, F(000)=460; MoKa radiation (graphite monochromator)  $\lambda$ =0.71073 Å,  $\mu$ (MoKa)=0.75 cm<sup>-1</sup>, room temperature.

A crystal of approximate dimensions 0.30x0.24x0.16mm was used to collect data.

Cell parameters were obtained from a least-squares treatment of the automatically determined setting angles of 25 reflections with  $2\theta$  values in the range  $30-44^{\circ}$ .

The intensity of all accessible reflections with 20<55° were measured by variable-rate 0/20 technique. The periodic measurement of three standard reflections showed no appreciable trend. Out of 5191 independent reflections measured, 1372, having I< $\sigma(I)$  were assigned zero weight; all other reflections were assigned variances  $\sigma^2(I)$  based on counting statistics plus the additional term (0.02S)<sup>2</sup>, where S is the scan count. Diffraction data were corrected for Lorentz and polari zation factors but not for absorption.

The structure was solved by direct methods using the program MULTAN<sup>9</sup> and refined by least-squares technique. All H atoms, with the exclusion of those bonded to C(10), were located in difference map during the course of the refinement. It was impossible to clearly recognize H atoms of C(10); coordinates for these atoms with two different torsion angles around C(2)-C(10) bond were calculated; the corresponding 6 H atoms were assigned a multeplicity factor of 0.5; they were used for structural factors calculation, but not refined.

The quality minimized was  $\Sigma w(\Delta P)^2$ , with weights  $w=4I/\sigma^2(I_0)$ . In the final cycles 391 parameters were simoultaneously adjusted: coordinates and anisotropic thermal parameters for 33 heavy atoms, coordinates and isotropic temperature coefficients for 23 hydrogen atoms, a scale factor, and a secondary extinction parameter g. The final results are R=0.045 and  $R_w$ =0.043 for the 3819 reflection classified as observed (R=0.077 for all 5191 reflection). The goodness-of-fit, defined as [ $\Sigma w(\Delta F)^2/(m-s)$ ]<sup>1/2</sup>, were m is the number of reflections and s is the number of parameters, is 1.97. Atomic scattering factors were from ref. 10. Pinal atomic coordinates for heavy atoms are given in Table 3\*; the final value of the extinction coefficient g is 13(2)x10<sup>-7</sup>. No residue greater than 0.20eÅ<sup>-3</sup> was found on the final difference map.

### REFERENCES

<sup>1</sup>E.M.Beccalli, A.Marchesini, <u>J. Org. Chem.</u>, **52**, 3426 (1987).

<sup>2</sup>E.M.Beccalli, M.L.Gelmi, A.Marchesini, T.Pilati, <u>J. Org. Chem.</u>, 52, 1666 (1987).
<sup>3</sup>E.M.Beccalli, T.Benincori, A.Marchesini, Synthesis, in press.

<sup>4</sup>P.H.Allen, O.Kennard, D.G.Watson, L.Brammer, A.G.Orpen, R.Taylor, <u>J. Chem. Soc.</u> Perkin II S1-S19 (1987).

<sup>5</sup>R.Jacquier, C.Petrus, F.Petrus, I.Verducci, <u>Bull. Soc. Chim. Fr.</u> 2690 (1970).

<sup>6</sup>A.Silveira Jr, S.K.Satra, <u>J. Org. Chem.</u>, 44, 873 (1978).

<sup>7</sup>J.Schreiber, <u>Bull. Soc. Chim. Pr.</u> 1361 (1956).

<sup>8</sup>R.Jacquier, C.Petrus, F.Petrus, I.Verducci, <u>Bull. Soc. Chim. Fr.</u> 2685 (1970)
<sup>9</sup>G.Germain, P.Main, M.M.Wolfson, <u>Acta Cryst.</u>, A27, 368 (1971).

<sup>10</sup>O.Kennard, <u>International Table for X-ray Crystallography</u>, Vol. III, Table 4.2.2. Kynoch Press, Birmingham (1962).

\*Lists of anisotropic thermal parameters for heavy atoms, coordinates and isotropic thermal parameters for H atoms and Table of structure factors have been deposited with Cambridge Crystallographic Data Centre, Lensfield, Cambridge CB2 1EW, England.